Key elements in NEMO to quantitative
nano-scale carrier transport analysis
in semiconductors

Gerhard Klimeck
Jet Propulsion Laboratory, California Institute of Technology

gekco@)jpl.nasa.gov
(818) 354 2182
http://hpc.jpl.nasa.gov/PEP/gekco

IihiS researchiwasscaried ouiinipartby at therdet Propulsion Lakeraton/, Caliiermiainstituie
oiliechnoeleey URderarcontract with therlNationalPAeronavtics andiSpacer/Administration:

Funding| by NRO; ARDA; ONR; NASA; JPL

Gerhard Klimeck Applied Cluster Computing Technologies Group




Thanks to:
NEMO Core Team Members

NEMO 1-D
Roger Lake, Texas Instruments / UC Riverside
R. Chris Bowen, Texas Instruments / JPL / Texas Instruments
Tim Boykin, U Alabama in Huntsville
BEN Blanks, Texas Instruments
William R. Frensley, uT Dallas

NEMO 3-D / Synthesis
Fabiano Oyafuso, JrL
Seungwon Lee, JrPL
Paul von Allmen, JprL
Olga Lazarenkova, JrL
R. Chris Bowen, JprL
Thomas A. Cwik, JpL

Fundingl by NRO; ARDA; ONR; NASA, JPL
Gerhard Klimeck Applied Cluster Computing Technologies Group




Outline:
Key Elements to NEMO

*NEMO Goal:

*Quantitative design and synthesis of resonant tunneling diodes
(RTD’s).

*Faster simulation than experimental turn-around (1 week).
*Anticipated / Expected:

«Scattering - origin of the valley current.

*Charge self-consistency - position of voltage peak.
* Unexpected / Breakthroughs:

*Treatment of extended contact regions

*Full bandstructure - Empirical tight binding: sp3s*, sp3d5s*

*Non-parabolicity, complex band warping, indirect gaps

*Putting it all together

*NEMO - testmatrix

*The next step: automated analysis and SYNTHESIS
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NEMO:

A User-friendly Quantum Device Design Tool

NEMO 1-D was developed under a NSA/NRO contract to Texas Instruments and Raytheon from ‘93-
'98 (>50,000 person hours, 250,000 lines of code).

NEMO 1-D maintained and NEMO 3-D developed at JPL ‘98-'02 (>12000 person hours) under NASA
funding. Since ‘02 NSA and ONR funding.

NEMO is THE state-of-the-art quantum device design tool.
 First target: transport through resonant tunneling diodes (high speed electronics).
+ Second target: electronic structure in realistically large nano devices (detectors).
* Newly set target: gbit device simulation.
Bridges the gap between device engineering and quantum physics.
Based on Non-Equilibrium Green function formalism NEGF - Datta, Lake, and Klimeck.
Used at Intel, Motorola, HP, Texas Instruments, and >10 Universities.
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Outline:
Key Elements to NEMO

* Anticipated / Expected:
Scattering - origin of the valley current.
*Charge self-consistency - position of voltage peak.
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Alloy (Disorder) Scattering
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Tow Temperature: Polar Optical Phonon and”
Interface Roughness Scattering
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Tow Temperature: Polar Optical Phonon and”
Interface Roughness Scattering
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Outline:
Key Elements to NEMO

* Anticipated / Expected:

*Charge self-consistency - position of voltage peak.
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Charge Accumulation/Depletion
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Symmetric RTD’s:

e

Charge Self-Consistency Still Important!

Outline:
Key Elements to NEMO

‘Unexpected / Breakthroughs:

*Treatment of
extended contact regions
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Modeling of a Typical GaAs/Al, ,Ga, ;As RTD
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Modeling of a Typical GaAs/Al, ,Ga, ;As RTD
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Carrier Injection from:
* Emitter bound states
« Continuum states.
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Generalized Boundary Conditions:
Boundaries as a Scattering Problem

« Left and right regions are treated as reservoirs.
* Quantum structure of reservoirs is included exactly.
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Treatment of the Electron Reservoirs

Typical Methods:
Injection from reservoirs with flat bands

New Method:
Injection of carriers from reservoirs with bent bands
Modified densities of states
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Modeling of a Typical GaAs/Al, ,Ga, ;As RTD
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Where does the valley current
current come from?
Self-consistency helps - not enough
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Modeling of a Typical GaAs/Al, ,Ga, ;As RTD

Single band with scattering

POP = Polar Optical Phonons
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Where does the valley current

current come from?
POP is the only efffective scattering
mechanism - not enough
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Modeling of a Typical GaAs/Al, ,Ga, ;As RTD

Single band with scattering

POP = Polar Optical Phonons

Outline:
Key Elements to NEMO

‘Unexpected / Breakthroughs:

..*Full bandstructure
Non-parabolicity
band warping
indirect materials
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Single Band vs. Multiband

Multiband without scattering Single band with scattering

POP = Polar Optical Phonons
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Comparison of 1 and 10 Band
Densities of States
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10 band lowers 2nd resonance
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Current Flow through the
Second Resonance

1 band
10 bands

1 band electron density current density
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Resonance State Lowering due to
Band Non-Parabolicity

Resonator Dispersion E(k)

Energy (eV)

/
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—— parabolic Wave vector (ZTT':)
= non-parabolic

Second diode turn-on at lower voltages.
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Wave Attenuation in Barriers

Attenuation Propagation

0.15 0.10 005 0 005 010 0.15

Wave vector (2775)
—1 Band == Coupled Bands

« Attenuation is smaller with coupled bands

« Tunneling probability increases

« Current increases

=> Barriers are more transparent than expected!!!
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Transport in Indirect Gap Barriers
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Momentum Space
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Multiband Effects in GaAs/AlAs RTD’s

- I' => X tunneling in the collector

- quantized states in the ‘barriers’
- I" and X resonances interact
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GaAs / AlAs RTD Simulation

Single Band Model Current Density vs. Voltage
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Outline:
Key Elements to NEMO

*Putting it all together
*NEMO - testmatrix
*The next step: automated analysis and SYNTHESIS
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Testmatrix-Based Verification (room temperature)
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Genetically Engineered
Nanoelectronic Structures (GENES)

Objectives:

« Automate nanoelectronic device synthesis, |
analysis, and optimization using genetic [eres | [ rness 55
algorithms (GA). —

Approach:

« Augment parallel genetic algorithm
(PGApack).

« Combine PGApack with NEMO.

 Develop graphical user interface for GA.

Desired
Simul. Data
Data

Architecture

Gene
Fitness

How do you know what you have built?

Results:
Nanoelectronic
Device
Structural
analysis

Energy (eV)

Crurment Dereity (kAsmme)

Doping (cm'3)

and doping profile of RTD device

Length Black: structure specs, Blue: Best fit
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Nasp

Key Elements to NEMO

Conclusions
*‘NEMO Goals Achieved:

*Quantitative design and synthesis of resonant tunneling
diodes (RTD’s).

Faster simulation than experimental turn-around (1 week).
‘Lessons Learned:

Comprehensive theory approach really did work.

*Needed close coupling to well controlled test matrices.

*Contact treatment and full bandstructure approach
brought breakthrough.

*Scattering (in central RTD) was not the most important
(against all predictions).

Scattering in the contacts is the most important effect, but
we need to fake it through relaxation time approximation.

*Can perform automated device synthesis and analysis.
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Basic Genetic Algorithm
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* Genetic algorithm parameter optimization is based on:

 Survival of good parameter sets
* Evolution of new parameter sets
* Survival of a diverse population

* Optimization can be performed globally, rather than locally.
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Basic Evolution Operations

Gross Exploration
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Crossover operation

different
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* Creation of new gene values.
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Global Optimization via Genetic Algorithms
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Global Optimization:
Genetic Algorithm Development

Genetic Algorithm Convergence
pop = 100, 300 generations, steady-state (10%), 2-point crossover p = 0.85, mutatation p = 1/2
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Outline:
Key Elements to NEMO

‘Unexpected / Breakthroughs:

*Treatment of
extended contact regions
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Outline:
Key Elements to NEMO

‘Unexpected / Breakthroughs:

..*Full. bandstructure
Non-parabolicity
band warping
Indirect materials
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Outline:
Key Elements to NEMO

* Unexpected / Breakthroughs:
*Treatment of extended contact regions
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